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Abstract 
 

A positioning algorithm based on the relative order 
of the received signal strengths is discussed. This 
algorithm in conjunction with the ray-tracing 
propagation model can have promising performance for 
indoor environments without any needs for extensive set 
of a priori training. Enhancements to the positioning 
algorithm will be proposed and investigated. Two sets 
of experimental results with 802.11-based 
infrastructure and MICA2 motes are presented to 
demonstrate the system capability and performance in 
practice.  
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1. Introduction 
 

Positioning techniques based on the Received Signal 
Strength (RSS) ([1],[2],[4]) have been extensively 
studied in literature. These techniques, although 
sometimes less accurate compared to more complex 
range-based techniques, are very simple to implement 
and offer low cost and effective alternatives for most 
applications. The core idea is to establish a one-to-one 
relationship between the received signal strength from 
several reference nodes and the current position of the 
mobile. One such system that has been implemented on 
the existing wireless local area network infrastructure is 
RADAR [2]. The main drawback of the RSS-based 
techniques is the need for a measurement-based training 
phase, during which the radio map of the environment 
is created. This map essentially contains the received 
signal strength from the reference nodes throughout the 
building. The process to generate a radio map is not 
only labor-intensive and costly, but also very sensitive 
to changes in the environment and possible sources of 
interference in the building.  

A simple alternative to generate the radio map for 
RSS-based positioning system is using an appropriate 
propagation model instead of the actual measurements. 
For example, deterministic channel models such as the 
ones based on ray-tracing are a good candidate for this 
problem. However, in these models, only simple high-

level building information, such as layout is used and 
other detail information about the environment such as 
the exact radio properties of the walls and other 
obstacles affecting the RSS such as furniture are often 
ignored. The accuracy of the predicted signal strength 
can be highly dependent on this detail information 
which is almost impossible to capture in the model. 
Therefore, the performance of the positioning system 
will heavily depend on the details of the model.  

We have implemented a prototype system based on 
the Euclidean distance of the RSS vectors (i.e. similar 
to RADAR) and experimentally tested its performance 
in the fourth floor of our building (i.e. NIST North). 
The system block diagram and the building layout are 
shown in figures 1 and 2 respectively. 

 
Figure 1. System block diagram to evaluate model-
based radio map 

 
Figure 2. Test area in the NIST North building 

Figure 3 illustrates the dependency of the positioning 
accuracy on different wall-types used in the ray tracing 
model. The observed variation (i.e. as much as 65%) in 
performance is mainly due to the fact that the algorithm 
is based on the numeric values of the received signal 
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strengths; therefore any error in the predicted RSS 
values (i.e. caused by the ray-tracing model) will 
directly reflect on the accuracy of the positioning 
system. This means that the system performance could 
potentially be improved if there are positioning 
algorithms that do not rely on the exact values of the 
predicted RSS.  

 
Figure 3. Average location error for various wall 
types 

Authors in [3] have suggested using the relative 
ordering of the RSS from all reference nodes as a 
signature to identify the position of a mobile. Their 
algorithm referred to as “Ecolocation”, generates the 
pair-wise ordered sequence of the reference nodes by 
ranking them on the collected signal strength 
measurements. Assume that Ri is the RSS from the 
reference node ‘i’ at the mobile's location (x,y). Then, 
given α reference nodes, their proposed algorithm in the 
online phase generates the following constraint matrix 
for every position of the mobile. 

 
 
where  

 
 
 

 
and 

 
In the offline phase, the radio map is constructed by 

generating the constraint matrices for a grid of points 
overlaying the layout. Each entry in the radio map is a 
constraint matrix resulting from the pair-wise ordered 
sequence of reference nodes based on their “distance” 
to the given grid point (xk,yk) as follows:  

 
 
 

where 
 
 

 
 
and 

 
It is claimed that although ranking based on distance 

does not always match with RSS-based ranking, the 
inherent redundancy that exists in each constraint 
matrix (i.e. inherent insensitivity to the absolute RSS 

values) gives rise to an acceptable performance for the 
positioning algorithm. The mobile position is estimated 
by finding the location on the radio map that has the 
closest constraint matrix to the one experienced by the 
mobile. The closeness metric here is similar to 
Hamming distance. 

In order to enhance the performance of this 
algorithm for indoor environments, where distance-
based ranking mostly does not match RSS-based 
ranking, we first propose to use a ray-tracing tool to 
generate the set of all constraint matrices required to 
build the radio map. Our conjecture is that for this 
particular positioning algorithm even a crude layout 
model, that can be used for the ray-tracing, will produce 
a more accurate radio map than one generated by 
simple distance-based approach. As mentioned before, 
although the penetration and/or reflection loss of each 
wall cannot be modeled accurately in a ray-tracing tool, 
the overall RSS ranking will be more accurate 
compared to the methodology used in [3]. The only 
additional input needed is a crude map of the building 
layout. The information regarding the dielectric 
parameters of each wall is not required. In fact, the 
exact value of these parameters, as will be shown later, 
will not have a big impact on the entries of the radio 
map; thus rendering the approach robust.  

Also, an important assumption in [3] is that all 
reference nodes can be heard by the mobile node at all 
locations throughout the environment. In other words, 
full coverage of the entire service area by each 
individual reference node is required. This assumption 
could be unrealistic in scenarios where the size of the 
area is large or reference nodes have limited power (e.g. 
sensor networks). Consequently, this implies that the 
algorithm is not scalable in terms of the size of the 
indoor environment. Here, we propose to modify the 
constraint matrix definition to include cases where 
reference nodes have limited coverage area which is 
smaller than the size of the building where positioning 
service needs to be offered. This modification enables 
the system to be easily scaled.  

We will discuss our proposed modifications and the 
resulting performance improvement in section 2. 
System implementation with MICA2 motes and an 
802.11-based prototype are presented in section 3. 
Existence of an optimal power allocation for reference 
nodes is explained in section 4 and finally reference 
node deployment strategy is briefly studied in section 5. 
 
2. System Modeling and Performance 
Evaluation 
 

We propose a new set of constraints that takes into 
account the coverage area of each reference node by 
considering the mobile node's receiver sensitivity. 
When it comes to the positioning problem, it is 
important to note that knowledge of being outside the 
coverage area of a particular reference node could be as 
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informative as knowing the RSS value associated with 
that node. In a large area, not all reference nodes can be 
heard by the mobile at all times; therefore, we can 
extend the entries in the constraint matrix to include 
scenarios where the mobile is outside the coverage area 
of one or some of the reference nodes. This would 
happen if the RSS from a given reference node falls 
below the mobile node's receiver sensitivity. Receiver 
sensitivity is the minimal signal power that is required 
for a receiver to be able to detect the received signal. In 
other words, for a fixed reference node's transmission 
power, receiver sensitivity determines the extent of the 
coverage area for that reference node. If Rsens denotes 
the receiver sensitivity, then the following new entries 
for the constraint matrix can be defined in order to 
better capture information regarding the mobile's 
position. 

 
 
 

where  
 
 
 
 
 
 
 
 

 
and 

 
This extended set of constraints not only makes the 

system scalable in terms of the coverage area but also 
enhances the positioning accuracy. To evaluate the 
effectiveness of the proposed modification along with 
using a deterministic channel model to generate the 
radio map, we have implemented the algorithm and 
used a ray-tracing tool as a mean to generate all 
constraint matrices needed for the positioning 
algorithm. This is schematically shown in figure 4. 

In this study, we have used Wireless System 
Engineering (WiSE) as our ray-tracing tool to predict 
the average received signal strengths from each 
reference node [5]. We refer to the positioning 
algorithm with the ray-tracing-based radio map and the 
extended set of constraints as Comparative RSS 
(CRSS). We have simulated the performance of the 
positioning algorithm in [3] and compared it with 
CRSS. The block diagram in figure 5 describes the 
simulation platform. 

 
Figure 4. Radio map generation based on the ray 
tracing and RSS ranking 

 
Figure 5. System block diagram for performance 
evaluation 

Figure 6 shows the gain that is achieved in lowering 
the average error in the estimated position by the CRSS 
system. The graph displays average error in the 
estimated position for various number of reference 
nodes that have been placed in pre-determined locations 
in the 4th floor of the NIST North building (Figure 2).  

 
Figure 6. CRSS vs. Ecolocation (2.4 GHz, 900 m2 test 
area) 

The above results were obtained by considering 400 
random test locations for the mobile and calculating the 
average error for the given number of reference nodes. 
The RSS of each of the 400 mobile test positions were 
generated using the ray tracing module which in reality 
might not match their corresponding measured values. 
So, in order to capture the effect of error in the 
predicted RSS on the system performance, an error 
component needs to be added to each predicted RSS 
prior to the evaluation process (see Figure 7). This error 
component which can be modeled as a Lognormal 
random variable represents how accurate the ray-tracing 
module can predict received signal values throughout 
the environment. Details of the modeling procedure 
have been omitted for brevity.  

In section 1, we showed that this error has a great 
impact on positioning algorithms such as RADAR that 
solely rely on the numeric values of these predictions. It 
is interesting to see how the CRSS algorithm performs 
for large error intensities.  
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Figure 7. System block diagram with modeling error 

Figure 8 shows the system performance for various 
error intensities (i.e. µ=0 and σ=0,2,4,6). The error 
component (in dB) is an i.i.d. lognormally distributed 
random process with mean µ and variance σ2. As 
observed, CRSS exhibits a graceful degradation of 
performance as error intensity increases. Also, CRSS is 
completely resilient to dc errors (i.e. µ). This again is 
due to the fact that the absolute value of the RSS is not 
used by the algorithm; and therefore, any bias in the 
predicted RSS values will not affect the system's 
performance. 

 
Figure 8. Degradation of the performance with 
modeling error 

 
3. System Implementation 
 

We implemented the CRSS algorithm with an 
802.11-based system. The reference nodes were 
Intrinsyc's CerfCube embedded systems equipped with 
compact flash 802.11 wireless LAN cards with RF 
output power of 14 dBm. 14 reference nodes were 
located throughout the 4th floor of the NIST North 
office building as shown in figure 9. In this experiment, 
the transmit power of each cube is high enough so that 
it covers the entire area under test. Therefore, the 
mobile can hear all reference nodes regardless of its 
position. 

 

 
Figure 9. Node deployment and test locations 

As shown in figure 9, 14 different mobile test 
locations were also chosen. The true versus estimated 
mobile positions for this experiment has been plotted in 
figure 10. The average and standard deviation of the 
position estimation error are 2.02m and 1.64m 
respectively. The system generally exhibited great 
performance. The top middle and right hand side 
correspond to the lab location where lots of metal 
shelves are located. This is why the error at those 
locations is more than everywhere else. 

Our experiment shows that with a node density of 
0.015 nodes/m2 (i.e. 14 reference nodes in 900m2 area), 
an average error of about 2 meters is achievable. It has 
been shown that this is almost the best achievable 
average error for systems that require extensive offline 
measurements [4]. Therefore, this methodology could 
be extremely promising for practical deployment of 
indoor positioning systems.  

 
Figure 10. Position estimation error 

Figure 11 illustrates the dependency of the 
positioning accuracy when various wall types are used 
in the ray tracing model. As observed, the CRSS system 
is far less sensitive to the variation in the material types 
(i.e. radio properties) of the walls in the model. 
Therefore, it is an appropriate candidate for an RSS-
based system that can have acceptable performance 
without any training phase. 
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Figure 11. Average location error for various wall 
types 

The performance of our proposed positioning system 
was further studied by conducting experiments with the 
900 MHz TinyOS Crossbow MICA2 Motes deployed in 
the NIST North, 4th floor building. 9 reference nodes 
were deployed in the test area as shown in figure 12. 
Also, in order to see the effect of the CRSS system, 
various power levels ranging from -20dBm up to 5dBm 
were used.   

 
Figure 12. Berkeley motes node deployment and test 
locations 

In order to take advantage of the extended set of 
constraints in the CRSS system, the receiver sensitivity 
of these MICA2 motes needs to be determined first. To 
obtain this threshold, we conducted a separate 
experiment which measured the average RSS versus 
packet loss for a total of 120 randomly chosen 
transmitter-receiver locations in the NIST north 
building. To measure the RSS between each 
transmitter-receiver pair, 200 packets were sent by the 
transmitter. The receiver then computes the average 
RSS over all received packets. This was repeated for 
different transmission power levels. The result of this 
experiment shows that we can take -95 dBm as the 
practical receiver sensitivity for the CRSS system. 
Details of this experiment are omitted for brevity.  

With the knowledge of the coverage limit of each 
reference node, we conducted experiments for various 
mobile test locations as shown in figure 13. The true 

versus estimated locations for this experiment has been 
plotted in figure 13. The average and standard deviation 
of the position estimation error for the CRSS system 
with only 5dBm reference node's transmission power 
were 2.46m and 1.53m respectively. In comparison, the 
experiment with the CerfCubes resulted in 3.25m of 
average error for 9 reference nodes each with 14dBm 
transmission power. This proves the gains (both in 
accuracy and power consumption) that can be achieved 
by the extended set of constraints in the CRSS system. 

 
Figure 13. Position estimation error with the mote 
experiment 

 
4. Optimal Power Allocation 
 

An important underlying assumption in all of the 
results so far, is equal transmission power for all 
reference nodes at all times. This transmission power 
basically controls the coverage area provided by each 
reference node. The shapes of all these coverage areas 
greatly impact the accuracy of the positioning 
algorithms discussed in this paper. For a given building 
layout and the receiver sensitivity, the coverage area 
directly depends on the node's location inside the 
building and its transmission power. In this section, we 
would like to show that there exists a non-uniform 
power allocation for reference nodes that could result in 
better performance in terms of the positioning accuracy.  
For a general layout and more number of reference 
nodes, the problem of finding this optimal assignment 
turns into a highly non-linear optimization problem. 
Simulated Annealing is a powerful method that has 
been shown [6] to be able to achieve global optimum 
without getting trapped at local minima. Here, we also 
propose to use Simulated Annealing to identify node's 
transmission power for 4 reference nodes deployed in 
the NIST North building.  

Table 1 shows the results of simulated annealing for 
the given node deployment. Under non-uniform power 
allocation for 4 reference nodes, an average error of 
3.25m can be achieved. This is 20cm better than the 
uniform power allocation case. It should be noted that 
proper reference node placement throughout the 
environment can also affect the system performance. 
However, the joint problem of optimal node 
deployment and power allocation is an extremely 
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difficult problem. We will briefly discuss the node 
deployment further in section 5. 

Table 1. Simulated Annealing results 

 Uniform Power 
Allocation [mW] 

Non-Uniform Power 
Allocation [mW] 

Reference Node 1 0.05 0.05 
Reference Node 2 0.05 0.11 
Reference Node 3 0.05 0.03 
Reference Node 4 0.05 0.3 

 
5. Reference Node Deployment 
 

Position of the reference nodes is another set of 
parameters that can impact the overall system 
performance. In open spaces (e.g. clutter-free), it is 
logical to expect that a symmetric placement of 
reference nodes would be the best strategy to follow; 
however, in general, at indoor environment, this could 
become a challenging problem. The complexity arises 
from the fact that usually in positioning systems 
mobile's visibility by several reference nodes (or vice 
versa) is required and the building layout could have a 
great impact on this issue. It would be an extremely 
desirable feature if the robustness provided in the 
positioning methodology can absorb such impacts and 
reduce the sensitivity of the overall performance to the 
exact location of the reference nodes.  

 
Figure 14. Adaptive versus fixed reference node 
deployment 

In the results provided so far, we have considered an 
overlay lattice and used the full (or partial) points on 
this lattice as reference node location. In other words, 
adding a reference node is done independently of the 
system performance for the current number of nodes. 
Adaptive node placement strategies have been proposed 
to increase the quality of spatial localization. The 
authors in [7] have suggested several algorithms that 
take advantage of the system performance for a given 
number of nodes before deciding on the location of the 
next reference node. We have implemented one such 
algorithm called “Grid” and verified its performance 
against our fixed lattice approach. As observed in figure 
14, adaptive node deployment displays similar 
performance to the fixed lattice approach. This means 
that the positioning algorithm also provides robustness 
against possible imperfections in the exact placement of 
the reference nodes. 

 
6. Conclusion 
 

The indoor positioning problem discussed here 
basically forms a multi-dimensional joint optimization 
problem. Among the parameters affecting the system 
performance, we have considered the number of the 
reference nodes, their locations, transmission power, the 
building layout and its radio properties. We have 
studied the effect of each one of these parameters 
individually and pointed out various strategies to 
improve the achieved accuracy. The focus in this 
research was to provide robust methodologies that are 
implementable on RSS-based, low cost, low complexity 
infrastructure. An essential step in doing so is to 
eliminate the offline training phase that could be an 
obstacle in practical implementation of these systems. 
By integrating any simple ray-tracing program with the 
proposed positioning algorithm, a complete system can 
be designed that is quickly deployable on 802.11-based 
systems or sensor networks. Further studies need to be 
done before such systems can have widespread 
applications in our daily life.  
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